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ABSTRACT

Scaling effects in the large however, a significant scale effect is
deflection response of graphite-epoxy observed in strength of the scaled
composite beams was investigated, beams. Small scale beams fail at
Eight different scale model beams higher normalized load and sig-
ranging from 1/6 to full scale were nificantly higher normalized end
subjected to an eccentric axial com- displacement levels than their full
pressive load to promote large bending scale prototypes. It is important
deformations and failures. Beams that this phenomenon be understood
having laminate stacking sequences before strength testing of scale model
including unidirectional, angle ply, composite structures can be utilized.
cross ply, and quasi-isotropic were
tested to examine a wide -. iety of
composite response and fail . modes. INTRODUCTION
The model beams were loaded under
scaled test conditions until Scale model technology represents
catastrophic failure. Data acquired one method of investigating the struc-
included load, end displacement, and tural crashworthiness of advanced,
strain measurements, and qualitative weight efficient composite aircraft
failure measurements. The experimen- components such as beams, frames, and
tat data is compared to a large rings. Impact tests on replica models
rotation beam analysis and a finite of composite structures can provide a
element model analysis. Results from cost effective alternative to full-
the tests indicate tat the beam scale crash tests. In addition, scale
response scales in the small deflec- model tests can be conducted to verify
tion region, but deviates as the analysis techniques, particularly
response becomes nonlinear. Failure finite element analyses. It is impor-
modes are consistent between scale tant, however, to understand the
models within a laminate family, limitations of scale modeling so that
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tests on sub-scale models will gener- designated as AS4/3502 for the static
ate valid data. Scaling effects in tests. The full scale beam was 3
the response and failure of composite inches wide with a 30 inch gage length
structures must be characterized and 48 plies thick with an average ply
before the technique can be used to thickness of 0.0054 inches. The scale
full advantage. A series of tests model beams were constructed by apply-
were conducted by Morton [1] to ex- ing seven different geometric scale
amine scaling effects in the dynamic factors including 1/6, 1/4, 1/3, 1/2,
response of transversely impacted 2/3, 3/4, and 5/6, to the full scale
composite beams. Results from those beam dimensions. A set of scaled
tests indicated that classical scaling beams is illustrated in Figure 1 and
laws apply for elastic dynamic the dimensions and lay-ups of each
response, but a size effect was ob- beam are listed in Table I. The
served as the beams became damaged thickness dimension was scaled by
under greater impact loads, reducing the number of layers in each

The objective of the current angular ply group of the full scale
research is to investigate scaling laminate stacking sequence which
effects in the static large deflection consisted of at least six plies of
response of composite beams. The similar orientation. Using this
scaled beams aro loaded in a beam- approach, it was not possible to
column fashion ly an eccentric axial fabricate a 1/4 or 3/4 scale quasi-
compressive load. This testing con- isotropic beam. Three replicate
figuration produnes large bending tests were conducted for each laminate
deformations and promotes global type and size of beam. The beams were
failure of the beams away from the machiied from panels which were con-
supported ends. A dimensional structed by hand from pre-preg tape
analysis was performed on the beam- and cured according to manufacturer's
column system using methods outlined specifications. Slight variations
in Baker [2] to determine the non- were observed in the thickness dimen-
dimensional parameters or Pi terms sions of the cured beam specimens.
which govern the scaled response. An Generally, the 1/6 scale beam was
experimental program designed to thicker on a per ply basis than the
validate the scaling laws was per- full scale beam for all laminate
formed and initial results are types. The maximum deviation in
reported in this paper. Also, a one normalized thickness was approximately
dimensional large rotation analysis six per cent.
and a DYnamic Crash Analysis of During the tests each beam
STrictures (DYCAST) [3) finite element specimen was gripped in a set of
model of the composite beam were hinges which offset the axial load
developed for comparison with ex- with a moderate eccentricity, as shown
perimental results. The results in Figure 2. Eight sets of hinges
obtained from the static experiments were constructed to ensure that the

'With , ve rif i ed DYCA SI' 1iod(.I
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f o- ,l(Ilict in' impact tests and Identification of commercial products
(t&:iamic analyses in the future, and companies in this paper is used to

describe adequately the test
materials. The identification of

EXPERIMENTAL PROGRAM these commercial products does not
constitute endorsement, expressed or

Beams having unidirectionql, angle implied, of such products by the U.S.
ply, cross ply, and quasi-isotropic Army, the National Aeronautics and
laminate stacking sequences were Space Administration, or the pub-
constructed of a high modulus graphite lishers of these conference
fiber and an epoxy matrix system proceedings.
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end condition was properly scaled for rotation for increasing load.

each test. The hinges were pinned to The beam bending stiffness was

the platens of a standard load test derived from the method described by
machine which applied the compressive Whitney [5] in which the bending

vert ical load. The hinged-pinned stiffness, El , from classical beam
connection allowed the beam to undergo theory is replaced by an equivalent
large rotations during deformation. stiffness for the composite beam. The
Beam specimens were loaded until beam is considered as a special case
catastrophic failure, defined as loss of a laminated plate in which the
of load carrying capability, length is much larger than the width.

Each beam was instrumented with Consequently, the transverse displace-

back-to-back strain gages located at ment is assumed to be a function of

distances one-quarter and two-thirds the axial coordinate only. Also, only

along the length and with strain gage the moment along the axial direction

rosettes at the midpoint. Vertical is assumed to be present. This is
load was measured by a load cell analogous to a plane stress assumption
located at the base of the bottom in elasticity. The transverse and
hinge. End displacement was measured twist curvatures are expressed in
by an extensiometer attached to the terms of the axial curvature and the
platens of the load test machine, bending stiffnesses, and are then
Vertical load, end displacement, and substituted into the equation relating
strain data were recorded using a bending moment and axial curvature.
personal computer based data acquisi- The equivalent beam bending stiffness
tion system. The analog signals were is the coefficient of the axial curva-
amplified and filtered prior to being ture from this equation. It
digitized and converted to engineering incorporates the shear and twist
units. Only the load versus end coupling terms which are important for
displacement data will be presented in angle ply and quasi-isotropic
this paper. laminates.

In addition to the beam analysis,
the nonlinear finite element struc-

ANALYSIS tural analysis computer program DYCAST
[3] was used to model the composite

A one dimensional large rotation beam-column. Since the DYCAST program
"elastica" type solution was developed will be used to model the beam-column

to predict the response of the com- under impact conditions in the future,
posite beam-column under eccentric the static case was developed to
axial load. The governing equation verify the model and to compare with
f'or the beam was derived from equi- the large rotation beam solution. The
librium of the forces and moments on a composite laminate was discretized
beam element, The exact expression into 60 beam elements which were

relating moment and curvature was constrained to permit only planar
incorporated in the analysis, thus deformations, as shown in Figure 2.
-illowing the solution to predict large The hinges at the top and bottom of
rotation response. The solution of the beam were modeled by two rigid
the governing equation is outlined in beam elements each. The model assumed
Tinoshenko and Gere [4] for the pinned conditions between the load
"elastica" problem and was adapted for machine and the hinge, and clamped

this problem by applying the end conditions between the hinge and beam.

moment boundary conditions produced by The bending stiffness used in the

the eccentric vertical load. The DYCAST model was the same as used in

F:olution is given in terms of elliptic the beam analysis outlined previously.

integrals and predicts the end dis- The complete model had 192 degrees of
placement, transverse displacement of freedom. The applied load was in-
the midpoint of the beam, and end creased incrementally at one end using
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a static full Newton iterative tech- Failure Mechanisms
nique in which the stiffness matrix
was updated in each iteration. The The photographs shown ir Figures
full Newton procedure was required 3(b) through 6(b) indicate that while
since the modified Newton method which the failure modes for the laminate
updated the stiffness matrix for each types considered in this study are
load step failed to converge in the different from each other, they are
nonlinear region of the response similar between scaled beams within
curve, the laminate family. Failure modes

appear to be independent of specimen
size. The unidirectional beams, shown

RESULTS in Figure 3(b), failed by fiber frac-
tures near the midpoint of the beam.

Normalized load versus end dis- This failure mode is typical of all
placement plots and corresponding the unidirectional beams 1/6 lirough
photographs of a complete (1/6 through full scale. Failure of the angle piy
full scale) set of failed beam beams occurred by transverse matrix
spe'cimens for the unidirectional, cracking along 45 degree fiber lines.
angle ply cross ply, and quasi- There was no evidence of fiber
isotropic laminates are shown in breakage, as shown in Figure 4(b).
Figures 3-6. Vertical load was nor- The cross ply laminates exhibited
malized by the Euler column buckling combined failure mechanisms of
load for the beam, and end displace- transverse matrix cracking and fiber
ment was normalized by the gage fracture. As the cross ply beam
length. Since three repeat tests were underwent large rotations, the 90
performed for each laminate type and degree plies located in the center of
size of beam, the results from one the laminate developed transverse
representative test are presented matrix cracks. The cracks were evenly
here. Repeatability between the three spaced and resulted in uniform pieces
tests was good. of debris, some of which are shown in

Figure 5(b) for the 5/6 scale beam.
Normalized Load Versus End The ultimate failure of the cross ply
Displacement Results beam was caused by fiber fractures in

the 0 degree plies. The quasi-
In general, the load versus isotropic beams failed through a

displacement curves show that the combination of matrix cracking,
response scales for small end dis- delamination, and some fiber failure.
placement ratios, typically less than Although the photograph in Figure 6(b)
0.1. Deviation from scaled response does not give a good indication, the
is observed for all laminate types as damaged quasi-isotropic beams are
the beams undergo large deflections highly curved. The sequence of
and the response becomes nonlinear, failure events occurred such that the
The angle ply beams show the most remaining intact section of the beam
pronounced deviation from scaled consisted of an unsymmetric laminate,
response, as seen in Figure 4(a). The resulting in the observed curvature.
small scale beams fail at a higher
normalized Load ind end displacement Analytical Results
1v-1 than the full scale beam. This
ob.;erved scale effect in failure Comparison of the experimental
belhavior is significant. The 1/6 data for the 1/6 and full scale
sI ;re e;am!; fail ,it an end displace- specimens with the large rotation beam
merit to length ratio from 2 to 10 analysis and the DYCAST finite element
times the value for the full scale analysis is plotted in Figures 7(a)
beam depending on the laminate type. through 7(d) for each of the laminate

types. Agreement between the two
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analysis methods is excellent, even strain based failure criterion such as
though they approach the problem in maxintum stress, maximum strain, Tsai-
different manners. The beam solution Hill, or Tsai-Wu, would not be able to
assumes an inextensible beam, while predict the observed scale effect.
the DYCAST model allows in-plane According to classical scaling laws,
deformations due to membrane loads, stress and strain should scale as
Also, the large rotation beam analysis unity. Corisequenitiy, under perfectly
incorporates the exact nonlinear scaled experimental test conditions
expression for beam curvature, while the stress and strain in a model beam
the DYCAST model uses the linear will be the same as for the prototype.
expression. However, these factors do A stress analysis of the scaled test
not appear to be important in the will predict one value of end dis-
response prediction. DYCAST appears placement to length ratio at which
to be sufficiently accurate for future failure should occur. Morton [1]
dynamic analyses of the scaled beam discusses a linear elastic fracture
since a closed form "elastica" type mechanics approach to the strength
analysis is not available, scaling of transversely impacted

Good correlation is obtained composite beams and shows that a
between the experiment and the beam theory for a notch-sensitive or
solution and DYCAST for small load brittle material can predict scaling
ratios, generally less than 0.4. effects in a cracked plate.
However, both the large rotation beam Application of these theories to a
solution and the DYCAST model typi- stress analysis of the beam-column
cally overpredict the experimental problem is planned as a continuation
beam response as the load ratio and of the experimental and analytical
normalized end displacement values results presented here.
increase and beam rotations become
large. This is true for all of the
laminates tested. The slope of the CONCLUDING REMARKS
response curve in the large deflection
region (normalized end displacement Scaling effects in the large
greater than 0.2) as predicted by both deflection response and failure be-
analyses is in good agreement with havior of graphite-epoxy composite
experiment, as shown in Figures 7(a), beams was investigated. A series of
7(c), and 7(d). Overprediction of the static tests on scale model composite
response by the large rotation beam beams having unidirectional, angle
analysis and DYCAST may be due in part ply, cross ply, and quasi-isotropic
to certain assumptions made in the laminate stacking sequences was
analysis including constant stiffness conducted. The beams were loaded
assumptions. The stiffness of the under an eccentric axial compressive
beam is reduced due to nonlinear load to promote large bending deforma-
,,at,. i; I propertie!; 'ind damage events tions and global failure. Plots of
''if I .; I 1 i;' • ! I I ix c.A +k l)" la ilu, Ia I i I .d Ioa'Id vv ;Ils t iid i l ;I act.

il-, 11ot mode led by tie analysis. ment were generated to compare with a

one dimensional large rotation com-
posite beam analysis and a DYCAST

DISCUSSION finite element model.

Results from the experiments showThe results presented here indi- that beam response scales in the small
cate that a significant scale effect deflection, elastic region; however,
exists in the failure behavior since deviations from scaled response appear
the smaller scale beams fail at a as the beams undergo large deflections
higher normalized load and much higher and rotations. The degree of varia-
normalized end displacement value than tion from scaled response is dependent
the full scale beam. Stress and on laminate stacking sequence. Angle
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ply laminates exhibited the greatest REFERENCES
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analysis and DYCAST finite element 2. Baker, W.E., Westine, P.S., and
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experimental data for low load ratios, Engineering Dynamics, Hayden Book Co.,
typically less than 0.4. The DYCAST Rochelle Park, N.J., 1973.
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response curve well. 4040, January 1987.
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Table 1. Scale model beam test specimen dimensions and lay-ups.

SuALE BEAM DIMENSION UNIDIRECTIONAL ANGLE PLY CROSS PLY QUASI-ISOTROPIC

1/6 0.5" X 5.0" 10 18T [45 2 /-45 21S  (0 2/90 21 S [-45/0/45/90]S

(.), 1," X / "'," I T 1()/ - . 10/9 -----

i/. 1.0" X 10.0" 1 0 1
16T [45 4/-454 S  [04/904) S  1.452/02/452/902]S

1/2 1.5" X 15.0" 10 124T [456 /-4561 S  
0 6/9 0 61 S [-453/03/453/9031S

2/3 2.0" X 20.0" 10 132T [45 [08/9081S  [-454/04/454/904]S

3/4 2.25" X 22.5" 10 136T [459/-459] S  [09/9091 S  ------------

5/6 2.5" X 25.0" 10 140T [4 5 101-4 510]s [010 9010]s [ 4 5 5/0 51.4 55/9 0 51S

6/6 3.0" X 30.0" 10 148T [4512/-45121S 1012/9012]S [-456/06/-456/9061S
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Figure 1. Photograph of scaled corposite beam specimens.
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Figure 2. Schematic drawing of the test configuration.
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(a) Normalized load versus end displacement.

(b) Failed beam specimens.

Figure 3. Unidirectional graphite-epoxy conpIosite beam results.
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(a) Normalized load versus end displacement.

(b) Failed beami specimens.

Figure 4. Angle ply gr-aphite-epoxy composite beam results.
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(a) Normalized load versus end displacement.

(b) Failed beam specmens.

Figure 5. Cross ply graphite-epoxy coposite beam results.
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(a) Normalized load versus end displacement.

(b) Failed beam specimens.

Figure 6. Quasi-isotropic graphite-epoxy ccnposite beam results.
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(a) Unidirectional beam results.
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(b) Angle ply beam results.

Figure 7. Comparison of normalized load versus end displacennt
experimental data for 1/6 and full scale beams with DYCAST finite element
analysis and large rotation exact solution.
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(d) Quasi-isotropic beam results.

Figure 7. Comparison of normalized load versus end displacmnt
experimental data for 1/6 and full scale beans with DYCAST f inite eleMent
analysis and large rotation exact solution.
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